Data Assimilation Algorithms for Numerical
Models

AW. Heemink, R.G. Hanea, J. Sumihar. M. Roest, N. Velzen and M. Verlaan

Abstract To understand and predict the behavior of a system one can use mesasure-
ments or one can develop physically based numerical models. In many applications
however neither of these approaches is able to provide an aceurate description of
the dynamic behavior of the system. A model is always a simplification of the real
world while measurements seldom produce a complete picture of the system be-
haviour. Using data assimilation techniques measurements and model results are
both used to obtain an optimal estimate of the state of the system. In this article we
present an overview of methods available to assimilate data into a numerical model.
Attention is concentrated on variational methods and on Kalman filtering. The main
problem of using these advanced data assimilation schemes is the huge computa-
tional burden that is required for solving real life problems. For variational methods
the-adjoint model implementation is essential to obtain an efficient data assimilation
algorithm, For Kalman filtering problems a number of approximate algorithms have
been introduced recently: Ensemble Kalman filters and Reduced Rank filters. These
algorithms make the application of Kalman filtering to large-scale data assimilation
problems feasible. After a briefl introduction to (he most important data assimila-
tion approaches we will discuss the advantages and disadvantages of the various
methods and present a number of real life applications.

1 Introduction

Measurements can be used Lo develop statistical models for predictin g the behavior
of environmental processes. However these types of models are derived from the
data and do not include physical knowledge of the process. Furthermore, measure-
ments alone do generally not provide a complete picture of the process. Especially
in case of processes that vary in space and time it is very hard to reconstruct the
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spatial and temporal patterns only from data. Physically based numerical models
produce resuolts that are spatially and temporally consistent. However these models
are usually not able (o accurately reproduce the measurements that are available.
The information provided by the models and by the measurement information is
often complementary. Therefore it is important to study a methodology for integrat-
ing measurements and physically based mathematical models. This methodology is
called data assimilation. By using numerical models that are based on physical laws
and that are continuously adapted by the measurements available the two sources of
information of the process, model information and measurement information, can
be integrated.

Data assimilation can be defined as a procedure (o incorporate data into a model
simulation so as to improve the predictions. However, assimilating data into a nu-
merical model is far from trivial. The simplest data assimilation procedure is to
overwrite the model values at the measurement locations with the observed data.
Inserting the data in this way into a numerical model is in general not a satisfactory
method. It leaves the model dynamically unbalanced and introduces spurious waves
into the model. These short waves may even cause instabilities of the underlying
numerical model.

A common data assimilation technique used in numerical weather prediction is
optimal interpolation. Here some estimates of the error statistics of the numerical
model are used to correct the results of the model using the measurements, How-
ever, since these error statistics have o be determined by adopting some ad-hoc
statistical assumptions, the correction produced by optimal interpolation is again
not consistent with the underlying numerical model. As a consequence the use of
optimal interpolation often still yields unrealistic correction or instabilities.

More accurate data assimilation methods are variational data assimilation and
Kalman filtering. The basic idea of these data assimilation methods is to use the data
to only correct the weak points in the model. Weak parts of the model may be due fo
uncertainty in initial and boundary conditions or imperfectly known model param-
eters. The data is not allowed o modily the accurate parts of the model. As a result
these types of data assimilation problems are in [act. inverse problems. The specified
inputs (model uncertainties) have to be reconstructed from the output (measure-
ments). A variational approach or Kalman filtering solves these inverse problems
accurately. For linear problems it can be shown that both approaches produce ex-
aclly the same results for the same problem formulation. Optimal interpolation does
noet solve an inverse problem. It produces corrections for the model output without
reconstructing model uncertainties. As a result the variational method and Kalman
filtering dre superior to optimal interpolation.

In the last decennium the variational approach and Kalman filtering have gained
dceceptance as powerful frameworks for data assimilation. However, both methods
require a very large computational burden, at least an order of magnitude larger than
the computational effort required for the underlying numerical model. This is the
main disadvantage of these methods compared to optimal interpolation that requires
only a small increase in computer time.
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Starting point for the data assimilation methodology is a state space representa-
tion of the numerical model and the measurements. Let us assume that modeling
techniques have provided ns with a deterministic state space representation of the
form:

Kiry = f(Xp. k) + Bk, Xo=wxy. (1)

Here the X is the system state, uy. is the input of the system, fis a nonlinear function,
and B(k) is an imput matrix. For 2 numerical model that describes the behavior of a
physical process in space and time. the state consists of all the variables in all the
grid points of the model at a certain time, while the function f in this case represents
one time step of the numerical scheme of the model.
The measurements taken from the actual system are assumed te be available
according to the relation:
Zi = m( X, k), (2)

where Z; is a vector containing the measurements and m is a nonlinear function that
specifies the relation between the model results and the measurements.

In this.chapter we deseribe in Section 2 Lhe basic idea of the variational approach
and discuss 4 number of extensions. In Section 3 we introduce the Kalman filter as
data assimilation framework. Here we present a number of filler algorithms for solv-
ing large-scale data assimilation problems. In Section 4 a software environment for
data assimilalion is presented and the advantages of having a general framework for
applying different algorithms for different applications. Some of the large scale real
life applications are presented in the following chapters. In Section 5 applications
in coastal sea modeling are presented, in the specific cases of storm surge predic-
tion and assimilation of high frequency (HF) radar data into a coastal ocean model.
A large scale atmospheric chemistry application is presented in Section 6 together
witha comparison of the performance of different sequential algorithms.

2 Variational data assimilation
2.1 Data assimilation formulated as a minimization problem

Ifit can be assumed that the only uncertainties of the model (1)-(2) are introduced by
a number of poorly known parameters, the data assimilation problem can be formu-
lated as a determinislic parameter estimation problem. Rewrite the model according
to:

Xiv1 = [(Xapy k) + Bk, plug,  Xo =y, (3)
Z;;_ = m(Xk‘k),,
where p is 4 vector containing the uncertain parameters. Uncertain parameters may

be model paramelers, initial conditions or inputs. The state X is now dependent on
the parameters Xi(p). In order to estimate the parameters we first define a criterion
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J{(p) asa measure for the distance between the measurements and the model results:

K

T
1) = Y (Ze-m0a(p).K)) RU) (Z—mXel(p).K))- )
k=1

Here the generalized least squares criterion has been chosen Lo define J. The covari-
ance matrix R(k) is a weighting matrix that takes into account the errors associated
with the measurements. This formulation is used very often in practice. The optimal
parameter p is found by minimizing the criterion J(p).

Prior information about the parameter values pg can be included by adding a
regularization term to the criterion:

K
J(P] = ;\Z ((Zk _"”(X."r'(_P}'k)) TR(k)_I (Zk . ";"I{Xfc(f?Jakn)
==k

+(p— po) Py (p— po)- (3)

Here Ay is the covariance matrix of the prior information py. modeling the uncer-
tainty associated with this prior information. Usually pg is the first guess of the
uncertain parameters and the starting value for the optimization procedure. The reg-
ularization term in the criterion prevents that parameter estimates become unrealis-
tic if the measurement information is limited. In this case the estimates will simply
remain close to the first guess (as they should be).

2.2 The adjoint model

In most practical data assimilation problems the number of uncertain parameters is
very large. For example. if p represents the initial condition of a4 numerical model,
the number of parameters is equal to the dimension of the system state. Most op-
timization techniques are not able (o solve these very large-scale problems. In this
case the only feasible approach is 1o use a gradient-based optimization method and
to use a variational approach to efficiently compute the gradient of the criterion.

Forevery parameter p the system state X; has to satisfy the model constraint (3),
Therefore we can rewrite the criterion (4) as:

K s
J(p) = Y (Zx—m(Xe(p), k)" R(K) " (Z — m(Xi(p).K)) +
i
K1
Y Ll (X — £ (X, pok) — Bk, pluy). (6)
k=0

where Ly represents a Lagrange multiplier or adjoint state. Note that expression (6)
holds for any choice of Lj. It is easy to show that il L, satisfies the system of adjoint
equations:
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o @S (X pik) 7 dm(Xp. k) :
Il =17 X0 ool ) Rl 26T 7
A (Z—m(X,. k)" R(k) ax, (7)
fork=K-—1, K—2, ..., 1, with end condition Lg =0, the gradient of the criterion
can be computed by using the very simple expression:
i df (X, p,k) 9Bk,
ZLM!( J (X ps ) (k.p) k.)_ ®)
dp dp

Using this expression the gradient of the criterion can be determined from the results
of one forward simulation to evaluate the terms:

df (Xk-p-.k). 9Bk, P)

fork=1, 2, ...; K, and the results Ly, for k =K, K —1, ..., 1 of one adjoint
model simulation. The computational effort required to determine the gradient is
almost independent of the number of parameters. Therefore, by combining this idea
with a gradient based optimization scheme, a very efficient implementation can be
obtained, especially for data assimilation problems with many uncertain parameters.
This approach is often called variational data assimilation or the adjoint method.

Gl

2.3 Discussion

Variational data assimilation schemes are iterative schemes to minimize a eriterion
J(p). The number of iterations needed depends on the optimization scheme used.
In practice quasi-Newton schemes are often used for data assimilation problems.
For these types of schemes it is known that if the criterion is exactly quadratic, the
iteration process converges in d,, + |1 steps, with d,, as the dimension of p. In°most
practical data assimilation problems the actual number of iterations can be chosen
significantly less since the largest improvement is ofien obtained in the first few
iterations.

One problem with the application of variational data assimilation schemes is that
the results of one complete forward simulation have to be stored. This is for most
real life data assimilation applications a serious problem. Therefore one generally
only stores the system state at a limited number of time steps. If results at interme-
diate time steps are necessary the states are recomputed using the forward model
again. This reduces the storage problem at the expense of additional computations.

Another problem with variational data assimilation is the implementation of the
adjoint model. Although the mathematical derivation of this model from the origi-
nal forward model is straightforward, the coding of the adjoint model can be very
difficult. Especially in case when the forward model has been developed step by
step over a long period by different programmers and many parts of the code are not
well understood (although they produce reliable results). Moreover, forward models
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are often stll under development and are being improved continuously. As a result
the adjoint should also be updated continuously. Recently adjoint compilers have
become available that produce adjoint code from the code of the forward model
(Kaminski et al., 2003). However, for complicated forward models these compil-
ers still produce unsatisfactory results. Prabably the best way to develop an adjoint
implementation is to redesign and rewrite the forward code such that the adjoint
compiler is able to generate the adjoint. An advantage of this approach is that modi-
fications in the forward model can easily be included in the adjoint implementation.

Another approach to variational data assimilation with a comparable computa-
tional efficiency is based on model reduction (Ravindran, 2002, Vermeulen et al..
2004, 2006). This approach does not require the implementation of the adjoint of the
tangent linear approximation of the original model. Using an ensemble of forward
model simulations an approximation of the covariance matrix of the model variabil-
ity is determined. A limited number of leading eigenvectors (EOF’s) of this matrix
are selected to define a model subspace. By projecting the original model onto this
subspace an approximate linear model is obtained. Onee this reduced model is avail-
able. its adjoint can be implemented very easily and the minimization process can be
solved completely in reduced space with negligible computational costs. If neces-
sary, the procedure can be repeated a few times by generating new ensembles close
to the most recent estimate of the parameters.

The approach described in this section is a strong constraini variational method.
This means that the only uncertainties in the model are the specified parameters. The
model is considered to be perfect. A weak constraint variational approach allows for
model uncertainties too (Bennett, 2002, Heemink and Metzelaar, 1995 ). Like with
Kalman filtering model uncertainties are modeled by including stochastic forcing
term in the model equations. Algorithms based on a weak constraint formulation
are (even) more time consuming then the strong constraint approach and. therefore.
are not used very often yet.

3 Kalman filtering

3.1 The linear Kalman filter

In Section 2 model uncertainties were only due to poorly known parameters. Uncer-
tainties in a mathematical model can also be modeled by embedding the model in
a stochastic environment. For a linear system a stochastic state space representation
can be formulated as follows:

Xy = F(k}Xk—FB{k)LI;\—-l-G(k)Wk, (10)
Zi = M(K)X, +Vi. (11)

A Gaussian system noise process Wy with zero mean and covariance matrix Q(k) is
introduced to take inte account model uncertainties, G(k) is the noise input matrix.
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The Gaussian measurement noise Vi with zero mean and covariance matrix R{ k)
Iepresents uncertainties in the measurements. The initial condition Xj is assumed to
be Gaussian with mean xy and covariance matrix Py, Wy, . Vj and X are assumed o
be mutually independent.

Having defined the general stochastic state space representition of the model
(10) and the measurement relation (11) it is desired to combine (he measurements
with the information provided by the model to obtain an optimal estimate of the
system state. To solve this filtering problem the probability density of the state X,
conditioned on the history of the measurements Zy. Z;. .... Z; taken, has to be
determined. Under the assumption described above it can be shown that this con-
ditional density function is Gaussian. Therefore it is completely characterized by
the mean X (k|k) and covariance matrix P(k|k). Moreover, the mean is in this case
equivalent to the least squares estimate or any other meaningful estimate. Recursive
equations to obtain these quantities can be summarized as follows:

Time update:
X(k|k—=1)=F(k—1)X(k—1|k—1)+Blk—1)t_. (12)

Pl | k—1)=F(k—1)Plk—1|k—1)F(k—1)T +Gk—1)Q(k— 1)Glk—1)". (13)

Measurement update:

K(k) =Pk | k—1)M (k)T (M(k)P(k | ke —1)M (k)" —{—R(k))_l (14)
X(k | &) :X(k|k—l)+K(k}(Z;{—M(k)X(k|k—I))._ (15)
Pk | k) = (I—K(kf}M{k))P(k lk—1), (16)

where K (k) is called the Kalman gain.

The initial conditions for the recursive equations are X(0 | 0) =xp.2(0 | 0) = Py.
The Kalman filter has a predictor-corrector structure. Based on all previous infor-

mation, a prediction of the state vector at time 7 is made by means of the equations

(12).and (13). Onece this prediction is known it is possible to predict the next mea-

surement Z by:

M (k)X (k

k—1).

When the measurement 7. has become available the difference between this mea-
surement and its predicted value is used to update the estimate of the state vector by
means of the equations (14)-(16). Note that the Kalman filter gain matrix K (k) does
not depend on the measurements and may be precomputed.

The Kalman filter does not only produce the optimal estimate of the system state,
but also computes the covariance matrix of the estimation errot (13,16). This gives
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msight into the accuracy of the estimate. If the covariance of the state estimate is
computed with and without the use of measurements. the difference of the two re-
sults indicates the improvement of the state estimate due to the measurement infor-
mation,

The variational approach deseribed in Section 2 is based on minimizing a least
squares criterion. Since the Kalman filter also produces least squares estimates. the
filter results will be identical to the results of the variational approach [or the same
linear problem formulation. This is, e.g.. the case if the initial condition is chosen as
uncertain parameler in the variational approach and in the Kalman (ilter the system
noise is set to zero. The Kalman filter algorithm does not. however. explicitly com-
putes the estimate of the initial condition. but only the eptimal estimate of the final
state. If necessary the filter algorithm can be modified to also produce estimates of
previous states (Kalman smoother). This would produce the same estimate of the
initial condition as obtained with the variational approach. A discussion on optimal
smoothing is, however, out of the scope of this chapter.

For linear systems the Kalman filter is optimal lor Gaussian noise processes.
Linearity of the system results in a Gaussian conditional probability density function
for X; given the measurements available up to and including time k. As a result the
mean X (k|k) and covariance matrix P(k|k) completely determine this probability
density function. Higher order moments do not have to be taken into account to
derive the optimal filter. This is not the case or non-linear systems. Due to the
non-linedrities the density function for X is non-Gaussian and has to be deseribed
in general by an infinite number of moments. This makes optimal filters in the non-
linear case computationally infeasible. However, it is possible to derive approximate
filters for many non-linear systems using linearization techniques.

3.2 Kalman filtering for large-scale systems

3.2.1 Square root filtering

Using the standard Kalman filter algorithm for systems with a very large dimension
n of the state vector would impose an unacceptable great computational burden. The
most time consuming parl of the filter algorithm for large-scale systems is the first
term in the time update of the covariance matrix(13):

Flk—1DP(k—1|k—1)F(k—1)T.
For large-scale systems il is not practical to store the matrix F(k —1) and to de-
termine its transpose. F(k — 1) merely represents a sequence of linear operations.
Therefore the time update equation of the covariance matrix is rewritten as:

Flle—1)(F(k—1)Pk—1]k—1))".

From this equation we can see that for every time step & the operator F(k— 1) has to
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be applied 2n times: first for updating the n columns of the covariance matrix, then
for updating the 1 rows of the resulting matrix. As a result the computational effort
required for the algorithm is approximately equivalent with 2n model simulations.

In order to obtain a computationally feasible filter, simplifications have to be
imtroduced. However, there are serious problems with the more obvious simplifica-
tions that onc may consider. E.g.. modifying the filter algorithm by foreing correla-
tions at large distances to be zero usually results in 4 covariance matrix that is not
semi positive definite. The last condition is physically not possible and often results
in a total failure of the filter algorithm. To avoid this problem a squareTool algorithm
can be¢ used. This algorithm is based on the fact that a covariance matrix P can be
factorized as:

Plk—1|k—1)=L{k—1|k—1DLk—-1 | k—1)T,

where L is a square root of P. The factorization is not unique and there exist many
square roots of P. By rewriting the filter algorithm in terms of L instead of P a
more robust algorithm is obtained because approximations of L will never result in
a covariance matrix that is not semi positive definite. Most filter algorithms that have
been developed for large-scale systems are based on a square root representation of
the covariance matrix P where the square root of P is approximated by a matrix with
a reduced number of ¢olumns r. Hence, we have:

Fll—1)Plk—1 | k= 1)Fk=1)T = )
Flk—DLk—1 | k—1)(Fk—1)Ltk—1 | k—1))"

Asa result only the » columns of L{k— 1 | k— 1) have to be updated yielding a
computational effort that is approximately equivalent with only r model simulations.
3.2.2 Classical Ensemble Kalman filter

The Ensemble Kalman filter (EnKF) introduced by Evensen (1994) is based on a
representation of the probability density of the state estimate by a finite number N
of randomly generated system states

Elk—1 |k~ 1),i=1,...N.

The optimal estimate and the square root of the covariance matrix of the estimation
error are now given by:

Ii\n’
X(k=1[k=1)= © Y &k—1 k1), (17
=1

E(f—1|k—1)=
[Eilk—1k=1)=X(k—1|k—1) - Eylk—1|k—1)=X(k=1]k—1)].
(18)
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The square root L{k — 1 | k— 1) defines an approximation of the covariance matrix
Plk—1|k—1} with rank N:

PY(k—1|k—1)= ﬁL(_k—l | ke—1)Efk—1 [k—=1)T. (19)

PY¥(k— 1| k— 1) is however never actually computed. Using the algorithm, first the
initial ensemble of state vectors is generated with mean xy and covariance matrix By,
Then for updating the ensemble, realizations of the system noise and measurement
noise processes are generated too. The Ensemble Kalman filter algorithm can be
summarized as follows:

Time update:
Eilk | k—1) = f(&k—1 | k—1).k—1) +G(k)w}. (20)
| N
X(f<1fc—|):N§§,-(k|k—1}. (21)
Lk | k—1) =&k | k— 1) — Xk | k—1) - ﬁw(klk-—]}—x{ﬂk—l)]:
(22

Measurement update:

K(k) = Lk | k= D)L(k | k— 1)"M(k)" .
(s MLk | & — 1)Lk | k—1)"M(E)" +R(k)) (23)

Eik | K) = &k | k— 1) +K (k) (Z — MK)E (k| ke — 1)+ v}). (24)

The time update equation is computationally dominant. As a result the computa-
tional effort required for the Ensemble Kalman filter is approximately N model
simulations. The standard deviation of the statistical errors in the slate estimate
converges very slowly with the sample size (= 1/N). This is one of the very few
drawbacks of this Monte Carlo type approach. Note that for the time update only
simulations with the original non-linear model are used. The tangent linear model
is not required.

3.2.3 Reduced Rank Square Root Kalman filter

The reduced rank square root filter algorithm (Verlaan and Heemink 1997) is based
on a [aetorization of the covariance matrix of the state estimate according Lo;

PO(k—1|k—1y=Llk—1|k=T1)L{k—1 |k—1)7,

where L{k— 1| k— 1) is a matrix with the g leading eigenvectors L(k—1 [ k—1)






